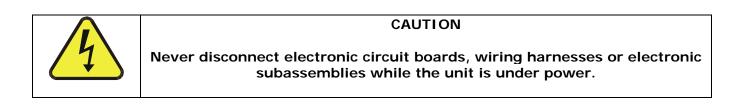


Relay PCA P/N 04523

Addendum to M100E, M200E and M400E Operator Manuals

© TELEDYNE INSTRUMENTS ADVANCED POLLUTION INSTRUMENTATION (T-API) 9480 CARROLL PARK DRIVE SAN DIEGO, CA 92121-5201 USA

> Toll-free Phone: 800-324-5190 Phone: 858-657-9800 Fax: 858-657-9816 Email: api-sales@teledyne.com Website: http://www.teledyne-api.com/


> > 05118 Rev B3 DCN 5362 20 March 2009

Copyright 2007 T-API Inc.

THIS PAGE INTENTIONALLY BLANK

SAFETY MESSAGES

For general safety information please refer to your M100E/M200E/M400E operator's manual.

Printed circuit assemblies (PCAs) are sensitive to electro-static discharges too small to be felt by the human nervous system. Failure to use ESD protection when working with electronic assemblies will void the instrument warranty.

See Chapter 12 of your M100E/M200E/M400E operator's manual for more information on preventing ESD damage.

NOTE

Technical Assistance regarding the use and maintenance of the any Teledyne Instruments product can be obtained by:

Contacting Teledyne Instruments' Customer Service Department at 800-324-5190

or

Via the internet at http://www.teledyne-api.com/inquiries.asp

THIS PAGE INTENTIONALLY BLANK

TABLE OF CONTENTS

1.	INTRODUCTION	1
	1.1. What's the Same	1
	1.2. What's Different	2
	1.3. Relay PCA Location and Layout	2
	1.3.1. Version 045230200	
	1.3.2. Version 045230100	3
2.	OPERATION AND CONFIGURATION	5
	2.1. Power Distribution	
	2.1.1. AC Power Configuration	5
	2.1.1.1. AC configuration – Internal Pump (JP7)	7
	2.1.1.2. AC Configuration – Standard Heaters (JP2)	8
	2.1.1.3. AC Configuration –Heaters for Option Packages (JP6)	9
	2.2. Valve Control	
	2.3. Status LEDs & Watch Dog Circuitry	. 10
	2.3.1. Watchdog Indicator (D1)	. 10
	2.4. Heater Control Loop	. 11
	2.4.1. Thermocouple Inputs and Configuration Jumper (JP5)	. 12
	2.5. DC Power Supply Test Points	
3.	TROUBLE SHOOTING AND REPAIR	.15
	3.1. Removing / Replacing the Relay PCA from the Instrument	. 15
4.	SCHEMATICS AND SPARE PARTS FOR RELAY PCA P/N 04523	.16

LIST OF FIGURES

2
3
5
6
7
8
9
10
11
15

LIST OF TABLES

Table 1-1:	List of Analyzers Using New Relay PCA P/N04523	1
Table 2-1:	AC Power Configuration for Internal Pumps (JP7)	
Table 2-2:	Power Configuration for Standard AC Heaters (JP2)	8
Table 2-3:	Power Configuration for Optional AC Heaters (JP6)	9
Table 2-4:	Thermocouple Configuration Jumper (JP5) Pin-Outs	
Table 2-5:	Typical Thermocouple Settings for M100E/M200E series analyzers	
Table 2-5:	DC Power Test Point and Wiring Color Code	
Table 2-6:	DC Power Supply Acceptable Levels	
Table 4-1:	List of Spare Parts	
Table 4-2:	List of Included Electronic Schematics	

THIS PAGE INTENTIONALLY BLANK

1. INTRODUCTION

This addendum documents a recent upgrade to the relay card installed in some of the M100E, M200E and M400E series analyzers. Specifically, a new relay PCA design, P/N 04523 replaces P/N 03955 and all of its versions in the following instruments.

It also corrects several errors related to the function of the relay PCA.

PRODUCT FAMILY	MODEL	RELAY PCA VERSION ¹	
PRODUCT PAIVILLY	MODEL	045230100	045230200
	M100E		✓
UV Fluorescence	M100EH		✓
ov Fluorescence	M101E		✓
	M102E		✓
	M200E		✓
Chemiluminescence	M200EH		✓
Cherningrinnescence	M200EM		✓
	M201E		✓
UV Absorption Analyzers	M400E	~	
¹ See Sections 1.3.1 and 1.3.2			

 Table 1-1:
 List of Analyzers Using New Relay PCA P/N04523

For those instruments, the information included in this addendum supersedes the information related to the relay PCA that appears in the chapters on <u>Theory of Operation</u> and <u>Troubleshooting</u> <u>& Repair</u> of your M100E/M200E/M400E operator's manual's.

Because the operator's manual for each model family of the E-Series instruments is slightly different there is no direct correspondence between the sections and chapters of this addendum and those of the manual.

1.1. What's the Same

In most respects the electronic operation of the **Relay PCA 04523** is the same as Relay PCA 03955.

 Both are used by the CPU to operate various AC and DC heaters that control the temperature of key components of the E-Series analyzers to such as sensor modules, reaction cells and converters as well as certain optional components such as IZS permeation tubes.

In both cases a set of configuration jumpers located on the relay card is used to configure the heaters for 110 VAC, 60 Hz vs. 230 VAC, 50 Hz $\,$ operation.

- Both Relay cards, based on commands from the CPU received over the I²C bus, energize/de-energize the various solenoid valves used to control the sample gas path of the analyzers (e.g. reference/measure valves; zero-span-cal valve options; IZS options; etc.)
- Both distribute the AC and DC power to the various electrically powered components and assemblies for the instrument.
- Both include a special watchdog circuit watches that will automatically shut of all valves as well as turn off the UV Source(s) and all heaters should either the CPU cease issuing commands or the I²C bus fail. In both cases the sample pump will continue to run.

1.2. What's Different

The major differences between the Relay PCA 04523 and Relay PCA 03955 are:

- On instruments with internal pumps, the pump is now configured for use with 110 VAC, 60 Hz vs. 220 VAC, 50 Hz operation by a set of configuration jumpers on the Relay PCA. Previously a set of inline connectors and wiring harnesses performed this function.
- The configurability of the two thermocouple inputs has been expanded to allow for both grounded and ungrounded thermocouples
- A retainer plate has been added to the 045230200 version to keep the solid state AC power relays securely inserted in their sockets.
- Because the board has been physically changes, locations of components such as jumper blocks, connectors and status LED's have changed.

1.3. Relay PCA Location and Layout

Generally the relay PCA is located in the right-rear quadrant of the analyzer and is mounted vertically on the back side of the same bracket as the instrument's DC power supplies, however the exact location of the relay PCA may differ from model to model. Please check the Getting Started chapter of your M100E/M200E/M400E operator's manual.

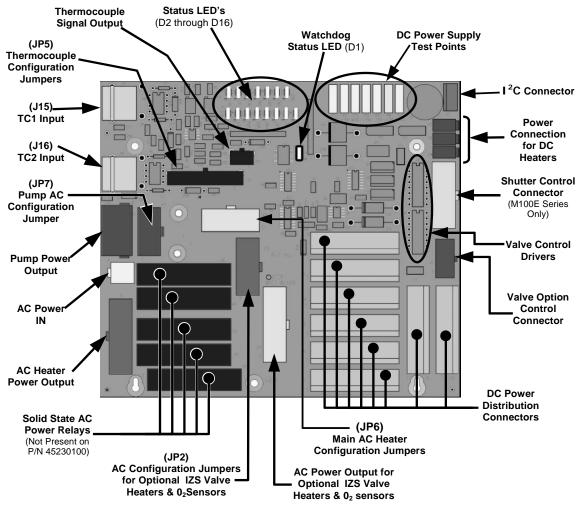
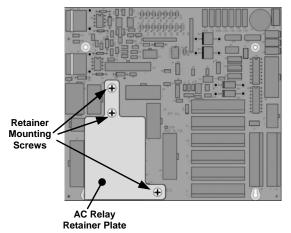
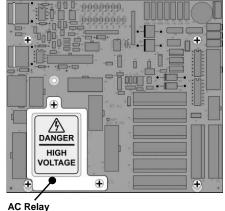



Figure 1-1: Relay PCA Layout (P/N04523)

There are two versions of the new relay card. Table 1-1 above cross references the PCA version with the various E-series analyzer models.

1.3.1. Version 045230200

This is the most commonly used version of the Relay PCA. It includes a bank of solid state AC relays. This version is installed in analyzers where components such as AC powered heaters must be turned ON & OFF. A retainer plate is installed over the relay to keep them securely seated in their sockets.


1.3.2. Version 045230100

This is the base version of the Relay PCA. It does not include the AC relays and is used in instruments where there are no AC powered components requiring control. A plastic insulating safety shield covers the empty AC Relay sockets (See Figure 1-3)

CAUTION

Never remove this safety shield while the instrument is plugged in and turned on. The contacts of the AC relay sockets beneath the shield carry high AC voltages even when no relays are present

Safety Shield

Figure 1-3: Relay PCA P/N 045230100 with Safety Shield In Place

2. OPERATION AND CONFIGURATION

2.1. Power Distribution

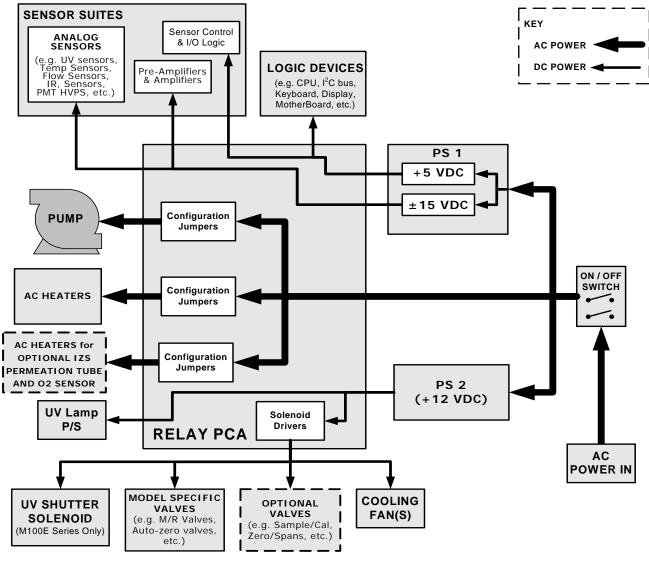


Figure 2-1: Power Distribution Block Diagram

2.1.1. AC Power Configuration

The E-Series digital electronic systems will operate with any of the specified power regimes. As long as instrument is connected to 100-120 VAC or 220-240 VAC at either 50 or 60 Hz it will turn on and after about 30 seconds show a front panel display. Internally, the status LEDs located on the Relay PCA, Motherboard and CPU should turn on as soon as the power is supplied.

On the other hand, some of the analyzer's non-digital components, such as the pump and the various AC powered heaters must be properly configured for the type of power being supplied to the instrument. Figure 2-3 shows the location of the various sets of AC Configuration jumpers.

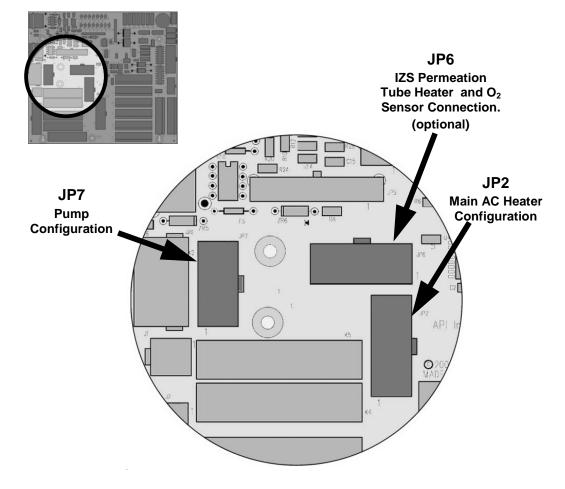


Figure 2-2: Location of AC power Configuration Jumpers

There are several changes between the **Relay PCA 04523** and previous version regarding AC power configuration and distribution.

- Previously, in analyzer models with internal pumps, the AC power for the pump came directly from the instrument back panel. The 04523 version handles all AC and DC power distribution including power to the pump.
- Prior to this change, configuring the pump for compatibility with various line voltages and frequencies was done with a set of hard-wired, in-line connections. The Relay PCA 04523, now includes a set of jumpers that perform this function. This change increase reliability and simplifies troubleshooting and repair operations.
- The **Relay PCA 04523**, includes a set of jumpers that connect AC power to heaters included in several optional items, such as the IZS valve option and the O₂ sensor option available on the M100E, M200E and M400E series instruments. In earlier versions of the relay PCA this was also handled by in-line connections.

2.1.1.1. AC configuration – Internal Pump (JP7)

AC power configuration for internal pumps is set using Jumper set JP7 (see Figure 1-1 for the location of JP7).

LI NE POWER	LINE FREQUENCY	JUMPER COLOR	FUNCTION	JUMPER BETWEEN PINS
			Connects pump pin 3 to 110 / 115 VAC power line	2 to 7
	60 HZ	WHITE	Connects pump pin 3 to 110 / 115 VAC power line	3 to 8
110VAC			Connects pump pins 2 & 4 to Neutral	4 to 9
115 VAC			Connects pump pin 3 to 110 / 115 VAC power line	2 to 7
	50 HZ ¹	BLACK	Connects pump pin 3 to 110 / 115 VAC power line	3 to 8
			Connects pump pins 2 & 4 to Neutral	4 to 9
	60 HZ	BROWN	Connects pump pins 3 and 4 together	1 to 6
220VAC	00112	BROWN	Connects pump pin 1 to 220 / 240VAC power line	3 to 8
240 VAC	50 HZ ¹	BLUE	Connects pump pins 3 and 4 together	1 to 6
	50 HZ ⁺ BLUE	BLUE	Connects pump pin 1 to 220 / 240VAC power line	3 to 8
¹ A jumper between pins 5 and 10 may be present on the jumper plug assembly, but is only functional on the M300E and has no function on the Models M100E, M200E or M400E.				

 Table 2-1:
 AC Power Configuration for Internal Pumps (JP7)

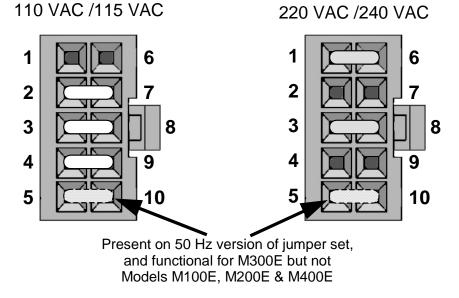


Figure 2-3: Pump AC Power Jumpers (JP7)

2.1.1.2. AC Configuration – Standard Heaters (JP2)

Power configuration for the AC the standard heaters is set using Jumper set JP2 (see Figure 1-1 for the location of JP2).

LINE VOLTAGE	JUMPER COLOR	HEATER(S)	MODEL'S USED ON ¹	JUMPER BETWEEN PINS	FUNCTION
		Reaction Cell / Sample Chamber Heaters	M100E's & M200E's	1 to 8	Common
		chamber fielders		2 to 7	Neutral to Load
		Mini Hi-Con	M200EH	3 to 10	Common
110 VAC / 115 VAC 50Hz & 60 Hz	WHITE	Converter	WZUUEN	4 to 9	Neutral to Load
30112 & 00 112		Moly Converter	M101E and M200E's	3 to 10	Common
				4 to 9	Neutral to Load
		By Pas Manifold	M200#M & M200EH	5 to 12	Common
				6 to 11	Neutral to Load
	BLUE	Reaction Cell / Sample Chamber Heaters ²	M100E's & M200E's	1 to 7	Load
220 VAC / 240 VAC		Hi Concentration Converter	M100EH	3 to 9	Load
50Hz & 60 Hz		Moly Converter	M101E and M200E's	3 to 9	Load
		By Pas Manifold	M200#M & M200EH	5 to 11	Load
¹ No AC Heaters are used in the M400E series analyzers.					

 Table 2-2:
 Power Configuration for Standard AC Heaters (JP2)

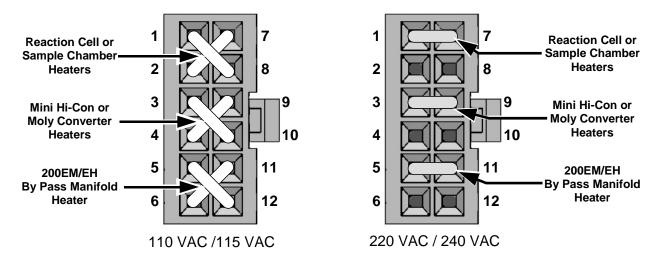


Figure 2-4: Typical Set Up of AC Heater Jumper Set (JP2)

2.1.1.3. AC Configuration – Heaters for Option Packages (JP6)

Both the IZS valve option or an O_2 sensor options include AC heaters that maintain an optimum operating temperature for key components of those options. Jumper set JP6 is used to connect the heaters associated with those options to AC power. Since these heaters work with either 110/155 VAC or 220/240 VAC, there is only one jumper configuration.

JUMPER COLOR	HEATER(S)	MODEL'S USED ON ¹	JUMPER BETWEEN PINS	FUNCTION
	IZS Permeation Tube Heater	M100E's, M200E's & M400E	1 to 8	Common
RED	ricater		2 to 7	Neutral to Load
	02 Sensor Heater	M100E's &	3 to 10	Common
	Oz Sensor Heater	M200E's	4 to 9	Neutral to Load

 Table 2-3:
 Power Configuration for Optional AC Heaters (JP6)

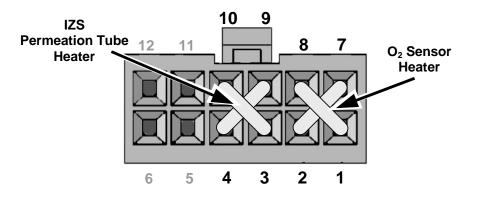


Figure 2-5: Typical Set Up of AC Heater Jumper Set (JP2)

2.2. Valve Control

Other than the location of the connectors and control chips on the PCA (see Figure 1-1 above), there have been no significant changes to the method by which the E-Series instruments' various valves and valve options are controlled.

2.3. Status LEDs & Watch Dog Circuitry

Like the previous version, the status LED's on the **Relay PCA 04523** includes thirteen LEDs that indicate the status of the analyzer's heaters, valves and other general operating conditions. Since the functions represented by these LED differs from model to model, check your M100E/M200E/M400E operator's manual for their exact assignments (this can normally be found in the section on Electronic Theory of Operation).

While the functional assignments for the LED's of each model have remained unchanged their location on the PCA is different. See Figure 2-3 of this addendum for the new locations.

2.3.1. Watchdog Indicator (D1)

The most important of the status LED's on the relay board is the red I^1C Bus watch-dog LED. It is controlled directly analyzer's CPU over the I^2C bus. Special circuitry on the relay PCA watches the status of D1. Should this LED ever stay ON or OFF for 30 seconds, indicating that the CPU or I^2C bus has stopped functioning, this Watchdog Circuit automatically shuts all valves and turn off all heaters and lamps.

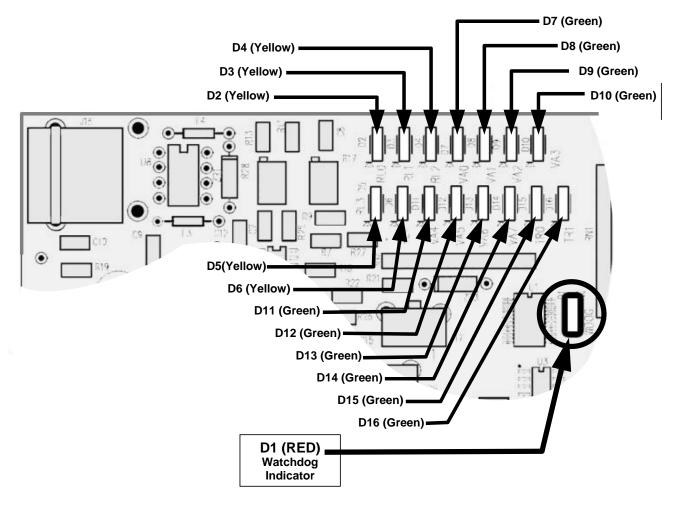


Figure 2-6: Status LED Locations – Relay PCA 04523

2.4. Heater Control Loop

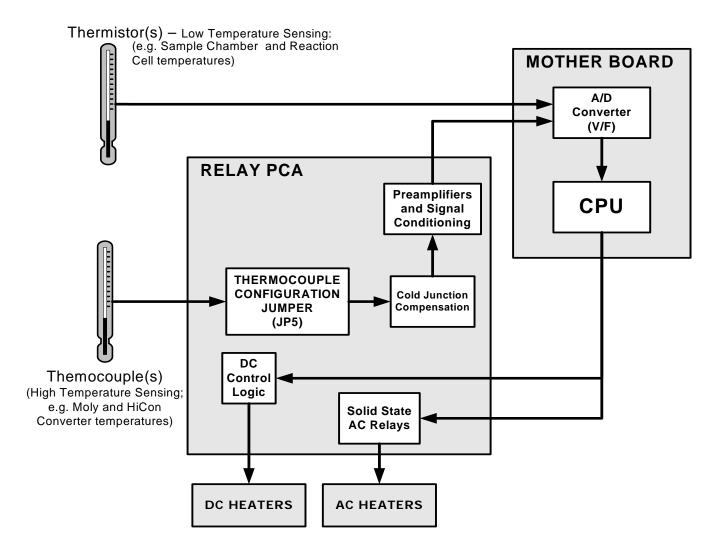


Figure 2-7: Heater Control Loop Block Diagram.

While the role of the heater control lop for the E-Series analyzers is basically unchanged from the previous version (see Figure 2-4) the configurability of the Thermocouple inputs has been enhanced. Previously, the two T/C inputs could be configured for either type-T or type-K thermocouples. The 04523 relay PCA adds the following.

- Both T/C's can now be configured as either grounded or ungrounded thermocouples.
- Standard configuration of the both type of thermocouples is 10 mV/°C. In order to accommodate the M200EH's Mini High-Con converter option, a type-K; 5mV/°C output configuration has been added.

2.4.1. Thermocouple Inputs and Configuration Jumper (JP5)

Although the 04523 relay PCA supports two thermocouple inputs, the current M100E/M200E series analyzers only utilize one and the M400E series analyzers none. By default, this single thermocouple input is plugged into the TC1 input (J15). TC2 (J16) is currently not used. See Figure 1-1 for location of J15 and J16

TC INPUT	JUMPER PAIR	DESCRIPTION	FUNCTION
	1 – 11	Gain Selector	Selects preamp gain factor for J or K TC - IN = J TC gain factor - OUT = K TC gain factor
	2 – 12	Output Scale Selector	Selects preamp gain factor for J or K TC - IN = 5 mV / °C - OUT = 10 mV / °C
TC1	3 – 13	Type J Compensation	When present, sets Cold Junction Compensation for J type Thermocouple
	4 – 14	Type K Compensation	When present, sets Cold Junction Compensation for K type Thermocouple
	5 – 15	Termination Selector	Selects between Isolated and grounded TC - IN = Isolate TC - OUT = Grounded TC
	6 – 16	Gain Selector	Same as Pins 1 – 11 above.
	7 – 17	Output Scale Selector	Same as Pins 2 – 12 above.
TC2	8 – 18	Type J Compensation	Same as Pins 3 – 13 above.
	9 – 19	Type K Compensation	Same as Pins 4 – 14 above.
	10 – 20	Termination Selector	Same as Pins 5 – 15 above.

 Table 2-4:
 Thermocouple Configuration Jumper (JP5) Pin-Outs

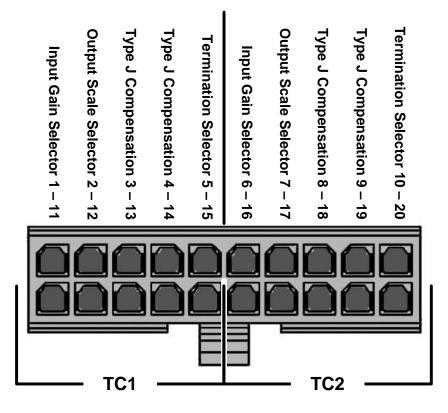


Figure 2-8: Thermocouple Configuration Jumper (JP5) Pin-Outs

Table 2-5:	Typical Thermocouple Settings for M100E/M200E series analyzers
------------	--

ТС ТҮРЕ	TERMINATION TYPE	OUTPUT SCALE TYPE	JUMPER BETWEE N PINS	USED ON	JUMPER COLOR
INPUT	TC1 (J15)				
К	GROUNDED	5mV / °C	2 – 12 4 – 14	M100EH with Mini HiCon Converter	BROWN
к	ISOLATED	5mV / °C	2 – 12 4 – 14 5 – 15	M100EH with Mini HiCon Converter	GREY
К	ISOLATED	10mV / °C	4 – 14 5 – 15	M100E/M200E with Moly Converter	PURPLE
J	ISOLATED	10mV / °C	1 – 11 3 – 13 5 – 15	M100E/M200E with Moly Converter	RED
J	GROUNDED	10mV / °C	1 – 11 3 – 13	M100E/M200E with Moly Converter	GREEN

2.5. DC Power Supply Test Points

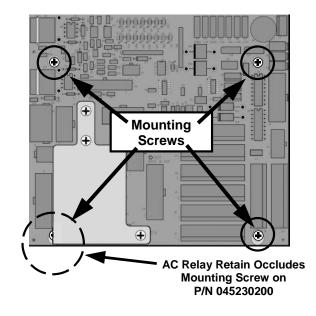
The tables defining the names and functions of the DC power test point that appear in Chapter 11 of some revisions of the M100E/M200E/M400E operator's manual are incorrect. The following tables show the correct information.

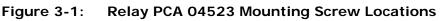
NAME	TEST POINT#	COLOR	DEFINITION
DGND	1	Black	Digital ground
+5V	2	Red	
AGND	3	Green	Analog ground
+15V	4	Blue	
-15V	5	Yellow	
+12R	6	Purple	12 V return (ground) line
+12V	7	Orange	

 Table 2-5:
 DC Power Test Point and Wiring Color Code

Table 2-6:	DC Power Supply Acceptable Levels
------------	-----------------------------------

POWER SUPPLY	VOLTAG E	CHECK <u>RELAY</u> BOARD TEST POINTS					
		FROM Test Point		TO Test Point		ΜΙΝΥ	MAX V
		NAME	#	NAME	#		
PS1	+5	DGND	1	+5	2	+4.80	+5.25
PS1	+15	AGND	3	+15	4	+13.5	+16.0
PS1	-15	AGND	3	-15V	5	-14.0	-16.0
PS1	AGND	AGND	3	DGND	1	-0.05	+0.05
PS1	Chassis	DGND	1	Chassis	N/A	-0.05	+0.05
PS2	+12	+12V Ret	6	+12V	7	+11.8	+12.5
PS2	DGND	+12V Ret	6	DGND	1	-0.05	+0.05


As on the previous version of the relay card, the test points are located at the top, right-hand corner of the PCA (see Figure 1-1)


3. TROUBLE SHOOTING AND REPAIR

General Trouble shooting hints for the relay PCA are the same as described for the previous versions for the PCA. See Chapter 11 of your M100E/M200E/M400E operator's manual for more information.

3.1. Removing / Replacing the Relay PCA from the Instrument

The Relay retainer plate installed on the 045230200 PCA (version with AC relays) covers the lower right mounting screw of the relay PCA. Therefore, when removing the relay PCA, the retainer plate must be removed first.

4. SCHEMATICS AND SPARE PARTS FOR RELAY PCA P/N 04523

Table 4-1: List of Spare Parts

DOCUMENT #	DOCUMENT TITLE				
RL0000015	Relay, DPDT, AC, Solid State, E-Series				
041520500	Module, Relay PCA & Power Supply				

Table 4-2: List of Included Electronic Schematics

DOCUMENT #	DOCUMENT TITLE			
04524	PCA, 04523, M100E, M200E, M400E Relay PCB			